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FaSRnet: a feature and semantics refinement network for 
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Abstract: Due to factors such as motion blur, video out-of-focus, and occlusion, multi-frame human pose estimation is a challenging 
task. Exploiting temporal consistency between consecutive frames is an efficient approach for addressing this issue. Currently, 
most methods explore temporal consistency through refinements of the final heatmaps. The heatmaps contain the semantics 
information of key points, and can improve the detection quality to a certain extent. However, they are generated by features, and 
feature-level refinements are rarely considered. In this paper, we propose a human pose estimation framework with refinements 
at the feature and semantics levels. We align auxiliary features with the features of the current frame to reduce the loss caused by 
different feature distributions. An attention mechanism is then used to fuse auxiliary features with current features. In terms of 
semantics, we use the difference information between adjacent heatmaps as auxiliary features to refine the current heatmaps. The 
method is validated on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018, and the results demonstrate the 
effectiveness of our method.
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1  Introduction

Human pose estimation is a popular subject in 
computer vision studies, with the goal of detecting 
and marking the positions of human key points (e.g., 
head and wrists) in an image. It has numerous appli‐
cations in diverse domains, such as video surveillance, 
autonomous driving, and motion analysis (Insafutdi‐
nov et al., 2017; Li et al., 2018; Zheng et al., 2019; 
Fang ZJ and López, 2020). Human pose estimation 

has been developed rapidly with the establishment of 
large datasets (Sapp and Taskar, 2013; Andriluka et al., 
2014; Lin et al., 2014) and deep learning (Wang M et 
al., 2012; Chu et al., 2017; Martinez et al., 2017; Yang 
X et al., 2017, 2018; Liu et al., 2019). However, exist‐
ing high-accuracy methods (Weinzaepfel et al., 
2013; Fang HS et al., 2017; Xiao et al., 2018; Sun 
et al., 2019; Cao et al., 2021) perform poorly when di‐
rectly applied to video data. Many high-precision 
methods were designed based on static images; when 
applied to video data, they often struggle to achieve a 
satisfactory performance due to motion blur, defo‐
cus, and occlusion. The frames lose a lot of spatial in‐
formation, leading to inaccurate detection results.

Due to the continuity of motion, multi-frame 
joint prediction is commonly used to improve output 
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accuracy. For example, some methods (Weinzaepfel 
et al., 2013; Pfister et al., 2015) use optical flow to cap‐
ture the motion information in successive frames and 
combine it with graphic information for prediction. 
However, the essence of optical flow is to calculate 
the motion of pixels in the image. When the back‐
ground changes rapidly, the effect is poor, and the cal‐
culation is time-consuming. Other methods (Luo et al., 
2018) use long and short-term memory (LSTM) net‐
works for pose estimation, but their training and infer‐
ence require high hardware configuration, which limits 
their applicability. Tracking-based methods can locate 
the same human body in adjacent frames, but they 
require feature extraction, similarity calculation, and 
data association modules, which increase the compu‐
tation and running time of the overall network. Besides, 
pose tracking is susceptible to occlusion and motion 
blur, which will significantly affect the accuracy of 
the outputs. Heatmaps, as the final output of general 
pose estimation networks, effectively represent the spa‐
tial distribution of key points while preserving their 
semantics information. Recent methods (Bertasius et al., 
2019; Liu et al., 2021) use image-based human pose 
estimation networks as backbones and directly asso‐
ciate temporal information at the semantics level, 
achieving improved results.

However, there are still some issues. For instance, 
in cases of rapid movement or deformation, the posi‐
tions of key points may undergo significant changes. 
In such scenarios, the semantics information alone 
may not accurately estimate the pose. The quality of 
heatmaps is influenced by corresponding features, and 
directly aggregating heatmaps at the semantics level 
yields unsatisfactory results (Fig. 1b). Therefore, we 
argue that it is necessary to associate and fuse tempo‐
ral information at the feature level to better address 
these problems.

Recent studies have found that multiple low-
quality predictions can be fused to generate a high-
quality prediction. This process is similar to video super-
resolution (Wang XT et al., 2019; Tian et al., 2020). In 
this process, there is usually a frame alignment opera‐
tion to align the auxiliary features with the reference 
features. In the video sequence, when the human body 
is moving, the spatial position of features containing 
important information in the auxiliary frame is often 
inconsistent with that of the current frame. When 

convolution is used to aggregate the same position 
information for multi-frame features, the contribution 
of the auxiliary frame to the current frame will be re‐
duced. When the auxiliary frame is aligned with the 
reference frame, the position of the effective feature is 
closer to that of the current frame, so the aggregation 
can achieve better results.

Inspired by these methods, we propose a tempo‐
rally consistent refinement architecture called the fea‐
ture and semantics refinement network (FaSRnet). The 
backbone network is used to obtain feature and heat‐
map information from the previous frame, current 
frame, and next frame. In the feature refinement stage, 
the features of the previous and next frames are aligned 
with those of the current frame separately, resulting 
in aligned features. Next, the correlation coefficients 
between adjacent features are calculated using an atten‐
tion mechanism, and weighted feature fusion is used 
to generate the feature-refined current feature, which 
is used to refine the heatmap of the current frame. 
The difference information between adjacent heatmaps 
can be used to refine the semantics features since these 
differences often reflect the positional motion infor‐
mation of key points in the video. In the semantics 
refinement stage, a subtraction is first conducted for the 
adjacent heatmaps, and motion change information is 
extracted. Then, the differential features are inputted, 
along with the aggregated adjacent heatmaps, into a 

Fig. 1  Comparison of image- and video-based methods: 
(a) video sequence of motion blur, where the goal is to 
estimate the left hand marked by the red box in It; (b) rough 
heatmap generated by aggregation; (c) three rough 
heatmaps generated by the image-based method (Sun et al., 
2019); (d) heatmap aggregated by our method (References 
to color refer to the online version of this figure)
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fusion refinement module based on deformable convo‐
lution, to generate the final result. Our method refines 
the results at the feature and semantics levels simultane‐
ously, decreases the impact of features extracted by the 
backbone network, and simplifies the overall network 
structure, yielding better results (Fig. 1d). Results from 
experiments on the widely used large-scale bench‐
mark datasets PoseTrack2017 and PoseTrack2018 
demonstrate the effectiveness of our method.

Our contributions can be summarized as follows:
1. We propose a feature and semantics refine‐

ment network (FaSRnet) for human pose estimation, 
which uses temporal information to refine the output 
at the semantics and feature levels, and is intuitive.

2. We design two components: feature refinement 
module (FRM) and semantics refinement module 
(SRM). FRM is used to effectively aggregate key point 
information in adjacent features; SRM uses difference 
information from adjacent heatmaps to refine the cur‐
rent heatmaps.

3. We have conducted extensive experiments 
on datasets PoseTrack2017 and PoseTrack2018 and 
achieved competitive results.

2  Related works

In this section, we briefly introduce two topics 
relevant to our work: video-based human pose esti‐
mation and semantics refinement.

2.1  Video-based human pose estimation

Video-based human pose estimation methods usu‐
ally take advantage of temporal dependency among 
video frames (Pfister et al., 2015; Song et al., 2017; 
Girdhar et al., 2018; Shao et al., 2023). Methods based 
on optical flow estimate human posture by calculat‐
ing optical flow between consecutive frames (Pfister 
et al., 2015). Pfister et al. (2015) used dense optical 
flow aligned heatmaps predictions from neighboring 
frames. Some approaches explore the structure of net‐
works that exploit temporal information. Optical flow 
based methods are computationally expensive and time-
consuming, and in some cases show performance deg‐
radation, such as occlusion and camera motion. Luo 
et al. (2018) built a recurrent architecture with LSTM to 
capture temporal geometric consistency and dependency 

among video frames for pose estimation. Recurrent 
neural networks (RNNs) can memorize well the infor‐
mation of a single person. With LSTM it is difficult to 
extract features that can improve the support frame, 
and the method has high time complexity. Girdhar et 
al. (2018) extended a three-dimensional (3D) convolu‐
tional neural network (CNN) architecture to integrate 
temporal information from adjacent video frames. This 
allows the 3D model to propagate useful information 
from contiguous frames. Liu et al. (2022) proposed 
to strengthen the correlation between multiple time 
frames by maximizing mutual information to bet‐
ter estimate the human body posture. Dang et al. 
(2022a) used the temporal correlations between joints to 
propose a plug-and-play kinematic modeling module 
(KMM) based on a domain-cross attention mecha‐
nism. KMM explicitly models the temporal relation‐
ships among different joints across video frames.

2.2  Semantics refinement

Since the outputs of the human pose estimation 
network are heatmaps containing semantics informa‐
tion, some methods began using the corresponding 
semantics information to improve the accuracy of the 
results. Cao et al. (2021) calculated the similarity be‐
tween the connection and corresponding limbs of two 
key points to judge whether the key points belong to 
the same person. The human skeleton is a natural graph 
structure. Jin et al. (2020) and Wang J et al. (2020) 
used graph convolution to capture the relationship 
between key points, and then refined the output at the 
semantics level. Dang et al. (2022b) captured semantics-
level guidance information, assisting in locating corre‐
sponding features in the next frame. Bertasius et al. 
(2019) and Liu et al. (2021) refined the current frame 
using the difference in heatmaps between the auxiliary 
frames and the current frame. However, the features 
of consecutive frames also affect output accuracy, and 
it may not be enough to refine only the heatmaps. Our 
method refines the result not only at the semantics level 
but also at the feature level.

3  Methodology

Given three consecutive frames It−1, It, and It+1, 
where It is the current frame and the others are auxiliary 
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frames, the aim of the network is to estimate high-quality 
output pose Pt in It, approximating the ground-truth 
pose Pg. The pipeline of our proposed FaSRnet is 
illustrated in Fig. 2.

Since generally there are multiple persons in the 
image, the image needs to be preprocessed. We use a 
human detector to detect the persons in It−1, It, and It+1. 
In some human detection results, some body parts 
(such as palms and feet) far from the center of the hu‐
man body cannot be completely included in the de‐
tection frame, resulting in incorrect detection. To avoid 
this, while remaining consistent with the previous ap‐
proach, we do the following: we use the bounding box 
obtained from It to localize the same person in con‐
secutive frames, and the bounding box is enlarged by 
25%. Therefore, the human body in the image can be 
fully selected and multi-person pose estimation is trans‐
formed into single-person pose estimation. The input 
to the backbone network is the cropped video clips 
C i

t−1, C
i
t , and C i

t + 1 of human i.
The cropped video clips are fed into the back‐

bone network to generate rough features Ft−1, Ft, and 
Ft+1 and heatmaps Ht−1, Ht, and Ht+1. In the feature re‐
finement stage, the generated features are fed into the 
feature alignment module to align the auxiliary frame 

features with the current frame feature. Then, the cur‐
rent feature and auxiliary features are fused in the atten‐
tion fusion module to generate the refined current 
feature F c

t . The heatmaps H c
t  refined at the feature level 

are generated by 1×1 convolution. During the seman‐
tics refinement phase, the module aggregates the dif‐
ference between the refined heatmaps and the auxiliary 
heatmaps, and uses them as additional information to 
calibrate the heatmaps. Finally, the network outputs the 
final refined heatmaps. Next, we will introduce each 
module in turn.

3.1  Feature refinement module

3.1.1  Alignment with multiple receptive fields and 
deformable convolution

The motivations behind the design of our feature 
alignment module are as follows: the distributions of 
positions of valid features in adjacent frames differ 
due to human motion. As time goes by, the position 
of the human body in the image will change, and the 
poses of the persons will have a certain deformation. 
Generally, features with a large range of motion require 
a deeper network for extraction. However, feature 
fusion from multiple layers loses the details of fea‐
tures extracted by shallow layers. A shallower network 

Fig. 2  The overall pipeline of our method. After the captured video sequence is inputted, the purpose is to identify the position 
of the human body in the current frame It. At the feature level, auxiliary features are aligned with current features and then 
fused with them through an attention mechanism. Finally, the heatmaps are generated by 1×1 convolution. At the semantics 
level, the current heatmaps are refined using the difference information between the heatmaps as auxiliary features
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is used to align an object whose position changes in dif‐
ferent frames to the same position, so that the object 
features can be in the same position.

Inspired by video super-resolution (Wang XT 
et al., 2019; Tian et al., 2020), we design a feature-level 
multi-receptive field feature alignment module, which 
uses a deformable convolution network (DCN) (Zhu 
et al., 2019) with different dilation rates to perform 
feature alignment at multiple scales. DCN has multi‐
ple inputs: input feature, offset feature, and mask 
feature.

The model structure is shown in Fig. 3. The yellow 
arrows indicate the calculated offset and mask fea‐
tures, which are generated by concatenating the cur‐
rent feature and auxiliary features. The blue arrows 
indicate the features to be aligned, and the input is 
auxiliary features. The final output of the module is 
the auxiliary features aligned with the key features. 
During feature alignment, this module repeatedly aligns 
auxiliary features with key features in different recep‐
tive fields to reduce the difference caused by feature 
distribution (the blue path in Fig. 3). We connect aux‐
iliary feature Ft+i and key feature Ft, and feed them 
into the convolutional layer to generate the base offset/
mask feature O f

0 /M f
0  with the same number of channels 

as the input features. Formally, the feature O f
0 /M f

0  is 
computed as

Ft⊕Ft + i ¾®¾¾
3 × 3

CNN
O f

0 /M f
0 . (1)

In the first branch, Ft+i’s are connected with O f
0 /M f

0 
and sent to the convolutional layer to generate the 
offset/mask feature O f

1 /M f
1  of this branch. Then, DCN 

with a dilation rate of 5 accepts features Ft+i, O
f
1, and 

M f
1  to generate feature F a

1 aligned under a large recep‐
tive field. The whole process can be expressed as

Ft + i⊕O f
0 /M f

0 ¾®¾¾
3 × 3

CNN
O f

1 /M f
1 , (2)

( Ft + i, O
f
1, M f

1 ) ¾ ®¾ ¾¾¾¾¾ ¾¾
dilation rate = 5

DCN
F a

1 . (3)

In branches 2 and 3, this module concatenates the 
generated alignment feature F a

n−1 with feature Ft+i and 
convolves to generate the aligned offset/mask feature 
O f

n /M f
n . Then features Ft+i, O

f
n, and M f

n  are fed into the 
DCN to generate aligned features. The whole process 
can be expressed as

F a
n−1⊕O f

0 /M f
0 ¾®¾¾

3 × 3

CNN
O f

n /M f
n , (4)

( Ft + i, O
f
n, M f

n ) ¾ ®¾ ¾¾¾¾¾ ¾¾
dilation rate = d

DCN
F a

n , (5)

where n stands for the branch number and d stands 
for the dilation rate, d∈ {3, 1}. Finally, the module 
connects F a

3  and feature Ft, and convolves them to 
obtain O f

4 /M f
4 . We feed Ft, O

f
4, and M f

4  to the DCN 
with a dilation rate of 1 and obtain the final aligned 
feature F a

t+1. The whole process can be expressed as

Ft⊕F a
3 ¾®¾¾

3 × 3

CNN
O f

4 /M f
4 , (6)

( Ft + i, O
f
4, M f

4 ) ¾ ®¾ ¾¾¾¾¾ ¾¾
dilation rate = 1

DCN
F a

t + i. (7)

The general deformable convolution has a dila‐
tion rate of 1. Although it has a learnable offset, its 
receptive field is not sufficient for feature fusion. The 
general method uses a pyramid structure (Wang XT 
et al., 2019), performs multiple downsampling and 
then upsampling, and fuses the current feature with 
the upsampled feature each time. The features extract‐
ed by the backbone network are generated after multi-
scale fusion. After feature downsampling, subsequent 
upsampling is generally done by bilinear sampling, re‐
sulting in a loss of the generated features compared 
to the original ones.

We use multiple deformable convolutions with 
different dilation rates in parallel to achieve feature 
alignment, avoiding feature loss caused by downsam‐
pling. The small dilation rate aggregates the local subtle 
features, the large dilation rate (Yu and Koltun, 2016) 

Fig. 3  The feature alignment module, taking the alignment of 
the previous feature and the current feature as an example 
(References to color refer to the online version of this figure)
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aggregates the overall feature information, and receptive 
fields of different sizes extract the multi-scale feature 
information. In the last branch, the module finally con‐
nects feature F a

3 with key feature Ft, which strengthens 
the connection between aligned features and key features 
and provides enough gradients for network training.

3.1.2  Fusion with spatial attention

For various reasons, such as motion blur, occlu‐
sion, and perspective transformation, there is no guar‐
antee that auxiliary features can help improve the cur‐
rent features. If wrong auxiliary features are fused, 
the quality of the current features and output accura‐
cy will be reduced. Therefore, it is necessary to judge 
whether auxiliary features can help improve the refine‐
ment. Specifically, the above problem is caused by the 
inconsistent distribution of effective information in 
consecutive features.

To reduce the impact of the above problems, we 
design an attention fusion module to fuse features of 
auxiliary frames. The structure of this module is shown 
in Fig. 2. Auxiliary features that are similar to current 
features should be given higher weights to increase 
their attention. Therefore, we first compute the simi‐
larity coefficients between the current feature and aux‐
iliary features. Our attention calculation method is 
based on Wang XL et al. (2018)’ s method. The simi‐
larity weight can be calculated as follows:

( fθ1 ( Ft + i ) )T ⋅ fθ2 ( Ft ) ¾ ®¾¾¾¾
Sigmoid

S ( Ft + i, Ft ), (8)

where Ft+i and Ft represent the auxiliary feature and 
key feature, respectively. fθ1(Ft+i) and fθ2(Ft) are two 
embedded features, which can be obtained by con‐
ventional convolution. The sigmoid function restricts 
the similarity coefficients to [0, 1]. Specifically, S(Ft+i,
Ft) has the same size as Ft+i.

Then, the calculated similarity coefficients S(Ft+i,
Ft) are used to weight the auxiliary features Ft+i. The 
specific operation is shown in the following formula:

Ft + i⊙S ( Ft + i, Ft ) ¾®¾¾
3 × 3

CNN
F ′t + i, (9)

where ⊙ is the element-wise multiplication. Finally, 
the aligned auxiliary features F ′t− i, F ′t+ i and current 
feature Ft are concatenated and inputted into the 
convolutional layer for fusion to generate the fused 

current feature F final
t . F final

t  is inputted to the 1×1 con‐
volutional layer to generate the refined heatmaps H r

t . 
The operation is shown in the following formula:

F ′t + 1⊕Ft⊕F ′t−1 ¾®¾¾
3 × 3

CNN
F final

t ¾®¾¾
1 × 1

CNN
H r

t . (10)

This module computes the similarity coeffi‐
cients between the current feature and aligned auxiliary 
features by spatial attention. The ability to perceive the 
effective information of the auxiliary features after 
alignment is enhanced, and the quality of the current 
feature after fusion is improved.

3.2  Semantics refinement module

The motivation for designing the semantics re‐
finement module is as follows: the adjacent rough heat‐
maps contain obvious human body key point position 
information, the difference between adjacent heat‐
maps reflects the amount of human motion within two 
frames, and the difference information can effectively 
supplement the key point positioning error in the cur‐
rent frame due to motion blur and other reasons. At 
the same time, refining the prediction results at the 
feature level alone has limited effect.

The current method uses mostly parallel multi-
expansion rate deformable convolution at the seman‐
tics level, which requires a large memory space dur‐
ing training. It merges multi-branch features using 
average weighted summation, which does not make 
good use of the revised heatmaps at multiple expan‐
sion rates. Our experiments showed that multi-branch 
features lead to limited improvement in network re‐
finement performance (see Section 4.4 for details). 
We design the following semantics refinement mod‐
ule, which reduces the resources required for train‐
ing while preserving performance. Ablation experi‐
ments demonstrated the effectiveness of our module 
design. The structure of this module is as shown in 
Fig. 2.

Specifically, we use the refined heatmaps H r
t  

to subtract the auxiliary heatmaps [Ht−1, Ht+1] and 
input the results into a 3×3 convolutional block 
(Cai et al., 2020) to generate difference information 
Dt,t−1 and Dt,t+1. This module connects features H r

t , 
Dt,t−1, and Dt,t+1, and then inputs the 3×3 convolu‐
tional block to generate the aggregated differential 
information Da:
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H r
t − Ht−1 ¾®¾¾

3 × 3

CNN
Dt, t−1, (11)

H r
t − Ht + 1 ¾®¾¾

3 × 3

CNN
Dt, t + 1, (12)

Dt, t−1⊕H r
t⊕Dt, t + 1 ¾®¾¾

3 × 3

CNN
Da. (13)

At the same time, Ht−1, Ht+1, and H r
t  are connected, 

followed by a convolutional layer that outputs aggre‐
gated heatmap Ha:

Ht−1⊕H r
t⊕Ht + 1 ¾®¾¾

3 × 3

CNN
Ha. (14)

After that, we connect Ha with Da, and feed them 
into the convolutional layer to generate an intermediate 
feature mask/offset Os /M s:

Da⊕Ha ¾®¾¾
3 × 3

CNN
Os /M s. (15)

Finally, the aggregated heatmap Ha, offset Os, 
and mask M s are fed into deformable convolutions to 
generate semantics-level refined heatmap H final

t :

( Ha, O
s, M s ) ¾®¾¾

3 × 3

CNN
¾ ®¾ ¾¾¾¾¾ ¾¾
dilation rate = 1

DCN
H final

t . (16)

Since the size of the valid information in each 
generated heatmap is about 10‒15 pixels, only a small 
receptive field is required to implement semantics-
level refinement. In this module, a deformable con‐
volution with a kernel size of 3 and a dilation rate of 1 is 
used. The effectiveness of this module is examined 
in the experiments in Section 4.

3.3  Loss function

We compute the L2 distance between the predicted 
heatmaps and the ground-truth heatmaps as the loss 
function. The loss is applied to predict both levels 
using the same ground truth.

During the experiments, we found that the per‐
formance improvement of the network is limited only 
if the final outputs are used to calculate the loss. This is 
because the network refines the results at both feature 
and semantics levels. Computing the loss using only 
the output of the final layer means that only semantics-
level refinement is supervised. There is no effective 
optimization object for feature correction, resulting in 
poor refinement results. The final loss is the sum of 
the two losses. The loss function is defined as

L1 =
1
J∑j = 1

J

Vj l2 ( H F
j , Ĥj ), (17)

L2 =
1
J∑j = 1

J

Vj l2 ( H S
j , Ĥj ), (18)

Loss = αL1 + (1 − α ) L2, (19)

where H F
j  represents the heatmaps generated by 1×1 

convolution after feature-level refinement, H S
j  repre‐

sents the heatmaps generated after semantics-level re‐

finement, Ĥj represents the ground-truth heatmaps, j 
is the key point number, Vj visualizes the key points 
in the label, and α is the weight coefficient of L1, set 
to 0.4 in this method.

4  Experiments

4.1  Experimental settings

PoseTrack contains two large-scale public datas‐
ets for human pose estimation and joint tracking in un‐
constrained videos. The PoseTrack2017 dataset (Iqbal et 
al., 2017) contains 514 video clips and 16 219 pose an‐
notations; we used 250 clips for training, 50 clips for 
validation, and 214 clips for testing. The Pose‐
Track2018 dataset (Andriluka et al., 2018) has 1138 
video clips; we used 593 for training, 170 for valida‐
tion, and 375 for testing. Training videos were densely 
annotated within the central 30 frames of each video 
clip. For the validation video, annotations were pro‐
vided every four frames for the entire video segment, 
in addition to the dense annotation of the central 30 
frames. Both PoseTrack2017 and PoseTrack2018 anno‐
tate 15 joints, two-dimensional (2D) coordinates of 
human joint points in the image, and an additional label 
annotating joint visibility. We trained and evaluated 
only visible joints.

We trained the network independently on Pose‐
Track2017 and PoseTrack2018 using the same config‐
uration. During training, we incorporated data aug‐
mentation, including random rotation [ − 45° , 45° ], 
random scaling [0.65, 1.35], truncation, and a hori‐
zontal flip probability of 0.5. The input image size 
was fixed to 384×288. The default radius D for gen‐
erating Gaussian heatmaps was set to 2. Hyperparam‐
eter α was set to 0.4. We used HRNet-W48 pretrained 
on the COCO dataset (Lin et al., 2014) as the back‐
bone network and fixed its weights in subsequent 
training. All subsequent weight parameters were 
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randomly initialized from a Gaussian distribution 
with μ=0 and σ=0.001, while the bias was always ini‐
tialized to 0. The Adam optimizer was used during 
training. Its basic learning rate was le-4, which de‐
cayed to 1/10 at the 8th, 16th, 20th, and 25th generations. 
We used an Nvidia GeForce 3090 GPU to train our 
model for 30 epochs with a training batch size of 64 
each.

Following the evaluation methods of Andriluka 
et al. (2018), we evaluated the performance of the 
human pose estimation network by computing the av‐
erage precision (AP). This metric was calculated inde‐
pendently for each joint and finally divided by the 
number of joints to obtain the final mean AP (mAP).

4.2  Comparison with existing methods

We first show the evaluation results for the vali‐
dation set and test set of the PoseTrack2017 dataset. 
The evaluation metric was AP. Table 1 shows the 
results of a quantitative comparison of our method 
with state-of-the-art methods (Doering et al., 2018; 
Girdhar et al., 2018; Xiao et al., 2018; Xiu et al., 
2018; Bertasius et al., 2019; Guo et al., 2019; Hwang 
et al., 2019; Jin et al., 2019; Sun et al., 2019; Zhang 
et al., 2019; Liu et al., 2021; Yang YD et al., 2021; 
Fang HS et al., 2023) on the PoseTrack2017 dataset. 
The comparison includes the AP of each keypoint 
and the mAP of all keypoints. Our method achieved 

an mAP of 83.0 on the validation set, outperforming 
state-of-the-art methods. In addition, Table 2 shows 
the comparison results on the test set (Doering et 
al., 2018; Girdhar et al., 2018; Xiao et al., 2018; 
Xiu et al., 2018; Bertasius et al., 2019; Hwang et 
al., 2019; Sun et al., 2019; Snower et al., 2020; Liu 
et al., 2021). Fig. 4 shows the visualization results 
of our method on some challenging scenes in the Po‐
seTrack2017 dataset.

Our model was also evaluated on the valida‐
tion and test sets in the PoseTrack2018 dataset. Ta‐
ble 3 shows the results from a comparison of our 
method with state-of-the-art methods on the valida‐
tion set, and Table 4 shows the results on the test set 
(Bertasius et al., 2019; Guo et al., 2019; Hwang et 
al., 2019; Sun et al., 2019; Wang MC et al., 2020; Fang 
HS et al., 2023). Fig. 5 shows the visualization re‐
sults of our method on some challenging scenes in 
the PoseTrack2018 dataset.

Due to the algorithm platform and incomplete 
open source, it is difficult to directly compare the 
time cost of each model. We compared the number of 
model parameters and computation complexity to es‐
timate the time cost. Table 5 presents the parameter 
number and computation complexity of our approach 
and those of the representative top competitors, 
such as HRNet (Sun et al., 2019), PoseWarper (Berta‐
sius et al., 2019), and DCpose (Liu et al., 2021). 

Table 1  Quantitative results of our method and state‐of‐the‐art methods on the PoseTrack2017 validation set

Method

PoseTracker

PoseFlow

JointFlow

SimpleBaseline

TML++

FastPose

STEmbedding

HRNet

MDPN

PoseWarper

Dynamic‐GNN

DCpose

AlphaPose

Ours

Year

2018

2018

2018

2018

2019

2019

2019

2019

2019

2019

2021

2021

2023

2022

AP

Head

67.5

66.7

‒

81.7

‒

80.0

83.8

82.1

85.2

81.4

88.4

88.0

‒

88.1

Shoulder

70.2

73.3

‒

83.4

‒

80.3

81.6

83.6

88.5

88.3

88.4

88.7

‒

88.8

Elbow

62.0

68.3

‒

80.0

‒

69.5

77.1

80.4

83.9

83.9

82.0

84.1

‒

84.2

Wrist

51.7

61.1

‒

72.4

‒

59.1

70.0

73.3

77.5

78.0

74.5

78.4

‒

78.4

Hip

60.7

67.5

‒

75.3

‒

71.4

77.4

75.5

79.0

82.4

79.1

83.0

‒

83.1

Knee

58.7

67.0

‒

74.8

‒

67.5

74.5

75.3

77.0

80.5

78.3

81.4

‒

81.4

Ankle

49.8

61.3

‒

67.1

‒

59.4

70.8

68.5

71.4

73.6

73.1

74.2

‒

74.2

mAP

60.6

66.5

69.3

76.7

71.5

70.3

77.0

77.3

80.7

81.2

81.1

82.8

76.9

83.0

The bold font denotes the best result
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Table 2  Quantitative results of our method and state‐of‐the‐art methods on the PoseTrack2017 test set

Method

PoseTracker

PoseFlow

JointFlow

SimpleBaseline

TML++

HRNet

PoseWarper

KeyTrack

DCpose

Ours

Year

2018

2018

2018

2018

2019

2019

2019

2020

2021

2022

AP

Head

‒

64.9

‒

80.1

‒

80.1

79.5

‒

84.3

84.6

Shoulder

‒

67.5

‒

80.2

‒

80.2

84.3

‒

84.9

84.8

Elbow

‒

65.0

‒

76.9

‒

76.9

80.1

‒

80.5

80.6

Wrist

51.5

59.0

53.1

71.5

60.9

72.0

75.8

71.9

76.1

76.2

Hip

‒

62.5

‒

72.5

‒

73.4

77.6

‒

77.9

78.0

Knee

‒

62.8

‒

72.4

‒

72.5

76.8

‒

77.1

77.2

Ankle

50.2

57.9

50.4

65.7

‒

67.0

70.8

65.0

71.2

71.0

mAP

59.6

63.0

63.4

74.6

67.8

74.9

77.9

74.0

79.2

79.3

The bold font denotes the best result

Table 3  Quantitative results of our method and state‐of‐the‐art methods on the PoseTrack2018 validation set

Method

TML++

MDPN

HRNet

PoseWarper

AlphaPose

Ours

Year

2019

2019

2019

2019

2023

2022

AP

Head

‒

75.4

80.1

79.5

‒

83.8

Shoulder

‒

81.2

80.2

84.3

‒

96.9

Elbow

‒

79.0

76.9

80.1

‒

82.7

Wrist

‒

74.1

72.0

75.8

‒

77.6

Hip

‒

72.4

73.4

77.6

‒

80.3

Knee

‒

73.0

72.5

76.8

‒

79.5

Ankle

‒

69.9

67.0

70.8

‒

74.0

mAP

74.6

75.0

74.9

77.9

74.7

80.9

The bold font denotes the best result

Table 4  Quantitative results of our method and state‐of‐the‐art methods on the PoseTrack2018 test set

Method

AlphaPose++

TML++

MDPN

PoseWarper

DetTrack

Ours

Year

2019

2019

2019

2019

2020

2022

AP

Head

‒

‒

‒

78.9

‒

83.3

Shoulder

‒

‒

‒

84.4

‒

84.2

Elbow

‒

‒

‒

80.9

‒

80.8

Wrist

66.2

‒

74.5

76.8

69.8

76.8

Hip

‒

‒

‒

75.6

‒

75.7

Knee

‒

‒

‒

77.5

‒

77.4

Ankle

65.0

‒

69.0

71.8

67.1

72.0

mAP

67.6

67.8

76.4

78.0

73.5

78.9

The bold font denotes the best result

Fig. 4  Visualization results of some challenging scenarios in the PoseTrack2017 dataset. Scenes include motion blur, occlusion, 
and multiple persons
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HRNet serves as the backbone network for DCpose, 

PoseWarper, and our method. Table 5 demonstrates 

that our method is similar to DCpose but better than 

PoseWarper in terms of the parameter number and 

giga floating-point operations per second (GFLOPs).

4.3  Visual comparison with existing methods

To visually demonstrate the performance of our 

method, the visualization results of our method were 

compared to those of existing methods under chal‐

lenging scenarios in PoseTrack2017 and Pose‐

Track2018 (Fig. 6). The scenes were defocus, occlu‐

sions, nearby persons, and rapid motion. The results 

of our method were better than those of PoseWarper 

(Bertasius et al., 2019) and HRNet (Sun et al., 2019). 

HRNet is based on a single-frame image, and the per‐

formance is degraded when the image quality is 

poor. PoseWarper improves keyframe results only at 

the semantics level, without considering feature-level 

refinements. Our method uses adjacent frame fea‐

tures and heatmaps as auxiliary information, and re‐

fines the keyframe results at the feature and seman‐

tics levels simultaneously, resulting in more accurate 

outputs.

4.4  Ablation study

To reduce the training time, we conducted abla‐
tion experiments on the smaller PoseTrack2017 data‐
set to verify the effectiveness of each module in our 
method. The modules for ablation include the feature 
alignment module, attention fusion module, and se‐
mantics refinement module. Our experimental results 
showed that the designed modules are effective in im‐
proving output accuracy.

Feature-level refinements: In this setting, we ex‐
plored the impact of feature alignment on network per‐
formance. Three settings were adopted in the experi‐
ment: removing the feature alignment module, feature 
alignment with a pyramid structure, and feature align‐
ment with multiple dilation rates.

Table 6 shows the following results: (1) When 
adding our feature-level refinement, mAP increased 
from 80.0330 to 82.4236. (2) The mAP was 82.2564 
when with a pyramid structure. The results proved our 
idea that aligned auxiliary features can effectively im‐
prove the current features. The downsampling and 
upsampling structures in the pyramid structure will lose 
part of the feature information, resulting in inaccurate 
alignment and decreasing mAP. The parallel multi-
dilation rate structure increased the receptive field of 
feature alignment, enabling the alignment module to 
adapt to the size of different features, thereby improv‐
ing the efficiency of the alignment module.

Attention fusion module: In this ablation setting, 
we explored the effect of attention mechanism on fea‐
ture fusion. We removed the attention mechanism in the 
fusion module and used only convolution for feature 

Table 5  Comparison of GFLOPs and the number of 
parameters among state‐of‐the‐art methods and our method

Method

HRNet

PoseWarper

DCpose

Ours

Input size

3×384×288

15×384×288

9×384×288

9×384×288

Parameter number

6.36×107

7.114×107

6.519×107

6.523×107

GFLOPs

35.54

438.58

117.61

117.66

Fig. 5  Visualization results of some challenging scenarios in the PoseTrack2018 dataset. Scenes include motion blur, occlusion, 
and multiple persons
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fusion. The resulting mAP decreased from 82.4236 
to 82.1327, which indicates that the auxiliary features 
after feature alignment have a negative impact on the 
refinement. It is necessary to introduce an attention 
mechanism to reduce this negative effect.

Semantics-level refinement: In this ablation set‐
ting, we explored mainly the effects of semantics-level 
refinement and multiple receptive fields (Bertasius 
et al., 2019; Liu et al., 2021) on the output. When the 
network added semantics-level refinement based on 
feature-level modules, its mAP increased from 82.4236 
to 82.9680. This result showed that refinements at the 
semantics level can improve network performance. 
Since Liu et al. (2021) used a deformable convolution 
module with parallel multi-dilation rates for refine‐
ment, the effect of different dilation rates on network 
performance was also explored in ablation.

Table 7 shows that the mAP was 82.9440 with 
multi-dilation rates, and 82.9680 with a single dilation 
rate. Multi-dilation rates had little effect on semantics-
level refinement. The subtle effects of multi-dilation 
rates on performance indicated that the effective in‐
formation in the heatmaps was concentrated in local 
areas. When generating label heatmaps, their effec‐
tive area was limited to about a dozen of pixels. There‐
fore, adding parallel multi-dilation rate branches has 
little effect on network performance. However, parallel 
multi-dilation rate convolutions require a lot of memory 
in a graphics processing unit (GPU) during training, 
so in our network, deformable convolutions with a 
dilation rate of 1 were used for refinement.

Auxiliary frame effects: We also explored the 
impact of using a single auxiliary frame on the net‐
work. When a certain auxiliary frame was removed, 

Fig. 6  Visual results of the pose predictions of our method (a), PoseWarper (b), and HRNet (c) in challenging situations 
from the PoseTrack2017 and PoseTrack2018 datasets. Scenes include defocus, occlusions, nearby persons, and rapid mo‐
tion. Inaccurate results are marked with red circles. References to color refer to the online version of this figure

Table 6  Ablation study at the feature level on the PoseTrack2017 validation set

Method

FaSRnet

FaSRnet (Baseline)

FaSRnet (PCDA)

FaSRnet (FDA)

FaSRnet w/o Att

AP

Head

88.1060

87.3318

87.4504

87.5150

87.4220

Shoulder

88.7576

88.1351

88.3379

88.4070

88.2743

Elbow

84.2307

83.3196

83.4284

83.6207

83.4160

Wrist

78.3686

77.1669

77.3575

77.6307

77.2839

Hip

83.0849

82.1129

82.6070

82.8760

82.4650

Knee

81.4284

80.2089

80.5165

80.5899

80.1781

Ankle

74.2305

73.3062

73.4997

73.7806

73.2446

mAP

82.9680

80.0330

82.2564

82.4236

82.1327

PCDA: feature alignment module with a pyramid structure; FDA: our feature alignment module; Att: our attention fusion module. The bold font 
denotes the best result
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the network performance dropped significantly (from 

82.9680 to 82.5407 and 82.5369) (Table 8). This was 

expected as time information plays an important role 

in the refinement, and each auxiliary frame can pro‐

vide useful information for the refinement of the cur‐

rent frames.

Loss hyperparameter α: We explored the effect of 

hyperparameter α in the loss function. The value of α 

ranged from 0 to 0.9 with a step of 0.1. The network 

performed the best when the value was 0.4 (Table 9). 

The results indicated that feature-level correction re‐

sults are worth using. The final output combines the 

two levels of refinement results and needs to be given 

larger weights, which is in line with our expectations.

Training stability: We verified the stability of 

the training of our method. We trained and tested 10 

times on PoseTrack2017. The results indicated that  

our method has good training stability (Table 10).

5  Conclusions

We propose a video-based human pose estima‐
tion model. The method refines the current frame at 
feature and semantics levels. A multi-receptive field 
feature refinement module is designed to refine the 
predicted pose. Our semantics correction module 
uses the difference information between heatmaps to 
further refine the predicted pose. Our method has 
been validated on large-scale benchmark datasets 
PoseTrack2017 and PoseTrack2018, outperforming 
most existing methods. The image-based pose esti‐
mation method is used as a backbone to estimate 
multi-person poses in video, making it intuitive and 
easy to understand. However, our semantics correc‐
tion module uses the heatmaps generated by the 
backbone network directly as auxiliary features. 
Subsequent work could explore the use of refined 
heatmaps to further improve the performance.
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Table 9  Ablation study of the loss function hyperparameter 
on the PoseTrack2017 validation set

α

0

0.1

0.2

0.3

0.4

Best mean AP

82.9188

82.9507

82.9445

82.9669

82.9997

α

0.5

0.6

0.7

0.8

0.9

Best mean AP

82.9645

82.9601

82.9619

82.9518

82.9332

The bold font denotes the best result

Table 8  Ablation study of the auxiliary frame on the PoseTrack2017 validation set

Method

FaSRnet

FaSRnet w/o N

FaSRnet w/o P

AP

Head

88.1060

87.8460

87.9876

Shoulder

88.7576

88.5093

88.4478

Elbow

84.2307

83.7763

83.7902

Wrist

78.3686

77.8341

77.9312

Hip

83.0849

82.8088

82.5358

Knee

81.4284

80.6752

80.8370

Ankle

74.2305

73.6541

73.5315

mAP

82.9680

82.5369

82.5407

N and P stand for the next frame and previous frame, respectively. The bold font denotes the best result

Table 10  Training stability of our method

Parameter

Number of training times

Maximum mAP

Average mAP

Variance

Value

10

82.9997

82.9759

0.000 254 571

Table 7  Ablation study at the semantics level on the PoseTrack2017 validation set

Method

FaSRnet

FaSRnet w/o FR

FaSRnet (SMD)

AP

Head

88.1060

87.6666

88.0695

Shoulder

88.7576

88.5231

88.8296

Elbow

84.2307

84.0318

84.1985

Wrist

78.3686

78.2326

78.2468

Hip

83.0849

82.9212

83.1996

Knee

81.4284

81.1459

81.4349

Ankle

74.2305

74.0071

74.0665

mAP

82.9680

82.7149

82.9440

FR: feature refinement module; SMD: using semantics with multiple dilation rates, with the dilation rate d being 3, 6, 9, 12, or 15. The bold font 
denotes the best result
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